Essential idempotents in group algebras and in Coding Theory

César Polcino Milies

Universidade de São Paulo and Universidade Federal do ABC

NON COMMUTATIVE RINGS AND APPLICATIONS IV, LENS. 2015

Definition

A linear code $C \subset \mathbb{F}^n$ is called a **cyclic code** if for every vector $(a_0, a_1, \ldots, a_{n-2}, a_{n-1})$ in the code, we have that also the vector $(a_{n-1}, a_0, a_1, \ldots, a_{n-2})$ is in the code.

Notice that the definition implies that if $(a_0, a_1, \ldots, a_{n-2}, a_{n-1})$ is in the code, then all the vectors obtained from this one by a cyclic permutation of its coordinates are also in the code.

Let

$$\mathcal{R}_n = \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

We shall denote by [f] the class of the polynomial $f \in \mathbb{F}[X]$ in \mathcal{R}_n . The mapping:

$$\varphi: \mathbb{F}^n \to \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle}$$

$$(a_0,a_1,\dots,a_{n-2},a_{n-1})\in \mathbb{F}[X] \qquad \mapsto \qquad [a_0+a_1X+\dots+a_{n-2}X^{n-2}+a_{n-1}X^{n-1}].$$

 φ is an isomorphism of \mathbb{F} -vector spaces. Hence A code $\mathcal{C} \subset \mathbb{F}^n$ is cyclic if and only if $\varphi(\mathcal{C})$ is an ideal of \mathcal{R}_n .

In the case when $C_n = \langle a \mid a^n = 1 \rangle = \{1, a, a^2, \dots, a^{n-1}\}$ is a cyclic group of order n, and \mathbb{F} is a field, the elements of $\mathbb{F}C_n$ are of the form:

$$\alpha = \alpha_0 + \alpha_1 \mathbf{a} + \alpha_2 \mathbf{a}^2 + \dots + \alpha_{n-1} \mathbf{a}^{n-1}.$$

It is easy to show that

$$\mathbb{F}C_n \cong \mathcal{R}_n = \frac{\mathbb{F}[X]}{\langle X^n - 1 \rangle};$$

Hence, to study cyclic codes is equivalent to study ideals of a group algebra of the form $\mathbb{F} C_n$.

Cyclic codes Group Codes Essential idempotents An application Cyclic codes vs Abelian Codes

Group Codes

Definition

A group code is an ideal of a finite group algebra.

- S.D. Berman 1967.
- F.J. MacWilliams 1970.

In what follows, we shall always assume that $char(K) \not \mid G \mid$ so all group algebras considered here will be semisimple and thus, all ideals of $\mathbb{F}G$ are of the form $I = \mathbb{F}Ge$, where $e \in \mathbb{F}G$ is an idempotent element.

Idempotents from subgroups

Let H be a subgroup of a finite group G and let \mathbb{F} be a field such that $car(\mathbb{F}) \not \mid |G|$. The element

$$\widehat{H} = \frac{1}{|H|} \sum_{h \in H} h$$

is an idempotent of the group algebra $\mathbb{F}G$, called the **idempotent determined by** H.

 \widehat{H} is central if and only if H is normal in G.

If H is a normal subgroup of a group G, we have that

$$\mathbb{F}G\cdot\widehat{H}\cong\mathbb{F}[G/H]$$

via the map $\psi: \mathbb{F} G \cdot \widehat{H} o \mathbb{F}[G/H]$ given by

$$g.\widehat{H} \mapsto gH \in G/H.$$

SO

$$dim_{\mathbb{F}}\left(\left(\mathbb{F}G\right)\cdot\widehat{H}\right) = \frac{|G|}{|H|} = [G:H].$$

Set $\tau = \{t_1, t_2, \dots, t_k\}$ a transversal of K in G (where k = [G : H] and we choose $t_1 = 1$), then

$$\{t_i\widehat{H}\mid 1\leq i\leq k\}$$

is a a basis of $(\mathbb{F}G) \cdot \widehat{H}$.

Then, an element $\alpha \in \mathbb{F}G \cdot e$ can be written in the form

$$\alpha = \sum_{\nu \in \tau} \alpha_{\nu} \nu \hat{H}.$$

If we denote $\tau = \{t_1, t_2, \dots, t_d\}$ and $H = \{h_1, h_2, \dots, h_m\}$, the explicit expression of α is

$$\alpha = \alpha_1 t_1 h_1 + \alpha_2 t_2 h_1 + \dots + \alpha_d t_d h_1 + \dots + \alpha_1 t_1 h_m + \alpha_2 t_2 h_m + \dots + \alpha_d t_d h_m.$$

The sequence of coefficients of α , when written in this order, is formed by d repetitions of the subsequence $\alpha_1, \alpha_2, \cdots \alpha_d$, so this is a *repetition code*.

Let G be a finite group and let $\mathbb F$ be a field such that $char(\mathbb F) \not | |G|$. Let H and H^* be normal subgroups of G such that $H \subset H^*$. We can define another type of idempotents by:

$$e = \widehat{H} - \widehat{H^*}$$
.

Code Parameters

Theorem (R. Ferraz - P.M.)

Let G be a finite group and let $\mathbb F$ be a field such that $char(\mathbb F) \not \mid |G|$. Let H and H^* be normal subgroups of G such that $H \subset H^*$ and set . Then,

$$dim_F(FG)e = |G/H| - |G/H^*| = \frac{|G|}{|H|} \left(1 - \frac{|H|}{|H^*|}\right)$$

and

$$w((FG)e) = 2|H|$$

where w((FG)e) denotes the minimal distance of (FG)e.

Theorem (R. Ferraz - P.M.)

Let G be a finite group and let $\mathbb F$ be a field such that $char(\mathbb F) \not \mid |G|$. Let H and H^* be normal subgroups of G such that $H \subset H^*$ and set $e = \widehat{H} - \widehat{H^*}$. Let $\mathcal A$ be a transversal of H^* in G and τ a transversal of H in H^* containing 1. Then

$$\mathcal{B} = \{a(1-t)\widehat{H} \mid a \in \mathcal{A}, t \in \tau \setminus \{1\}\}$$

is a basis of $(\mathbb{F}G)e$ over \mathbb{F} .

Let A be an abelian p-group. For each subgroup H of A such that $A/H \neq \{1\}$ is cyclic, we shall construct an idempotent of $\mathbb{F}A$. Since A/H is a cyclic subgroup of order a power of p, there exists a unique subgroup H^* of A, containing H, such that $|H^*/H| = p$. We set

$$e_H = \widehat{H} - \widehat{H^*}$$
.

and also

$$e_G = \frac{1}{|G|} \sum_{g \in G} g.$$

It is not difficult to see that this is a set of orthogonal idempotents whose sum is equal to $\boldsymbol{1}$

Definition

Let g be an element of a finite group G. The q-cyclotomic class of g is the set

$$S_g = \{g^{q^j} \mid 1 \le j \le t_g - 1\},$$

where t_g is the smallest positive integer such that

$$q^{t_g} \equiv 1 \pmod{o(g)}$$
.

Theorem

Let G be a finite group and \mathbb{F} the field with q elements and assume that gcd(q,|G|)=1. Then, the number of simple components of $\mathbb{F}G$ is equal to the number of q-cyclotomic classes of G.

Theorem (Ferraz-PM (2007))

Let \mathbb{F} be a finite field with $|\mathbb{F}| = q$, and let A be a finite abelian group, of exponent e. Then the primitive central idempotents can be constructed as above if and only if one of the following holds:

- (i) e = 2 and q is odd.
- (ii) e = 4 and $q \equiv 3 \pmod{4}$.
- (iii) $e = p^n$ and $o(q) = \varphi(p^n)$ in $U(\mathbb{Z}_{p^n})$.
- (iv) $e = 2p^n$ and $o(q) = \varphi(p^n)$ in $U(\mathbb{Z}_{2p^n})$.

Cyclic codes Group Codes Essential idempotents An application Cyclic codes vs Abelian Codes

Essential idempotents

1

¹Resuklts in this section are joint work with G. Chalom and R. Ferraz.

Let H be a normal subgroup of G. Then, \widehat{H} is a central idempotent and, as such, a sum of primitive central idempotents called its **constituents**.

Let e be a primitive central idempotent of $\mathbb{F}G$. Then:

- If e is not a constituent of \widehat{H} we have that $e\widehat{H} = 0$.
- If e is a constituent of \widehat{H} we have that $e\widehat{H} = e$.

In this last case, we have that $\mathbb{F}G \cdot e \subset \mathbb{F}G \cdot \widehat{H}$.

Hence, the minimal code $\mathbb{F}G \cdot e$ is a **repetition code**. We shall be interested im primitive inempotents which are not of this type.

Definition

A primitive idempotent e in the group algebra $\mathbb{F}G$, is an **essential idempotent** if $e \cdot \widehat{H} = 0$, for every subgroup $H \neq (1)$ in G.

A minimal ideal of $\mathbb{F}G$ will be called **essential ideal** if it is generated by an essential idempotent.

These idempotents were first considered by Bakshi, Raka and Sharma in a paper from 2008, where they were called *non-degenerate*.

Lemma

Let $e \in \mathbb{F}G$ be a primitive central idempotent. Then e is essential if and only if the map $\pi : G \to Ge$, is a group isomorphism.

Corollary

If G is abelian and $\mathbb{F} G$ contains an essential idempotent, then G is cyclic.

Assume that G is cyclic of order $n = p_1^{n_1} \cdots p_t^{n_t}$. Then, G can be written as a direct product $G = C_1 \times \cdots \times C_t$, where C_i is cyclic, of order $p_i^{n_i}$, $1 \le i \le t$.

Let K_i be the minimal subgroup of C_i ; i.e. the unique subgroup of order p_i in C_i and denote by a_i a generator of this subgroup, 1 < i < t. Set

$$e_0 = (1 - \widehat{K_1}) \cdots (1 - \widehat{K_t})$$

Then e_0 is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent $e \in \mathbb{F}G$ is essential if and only if $e \cdot e_0 = e$.

Galois Descent

Let \mathbb{F} be a field and C_n a cyclic group of order n such that $char(\mathbb{F})$ does not divide n. There is a well-known method to determine the primitive idempotents os $\mathbb{F}C_n$.

If ζ denotes a primitive root of unity of order n, then $\mathbb{F}(\zeta)$ is a splitting field for C_n , and the primitive idempotents of $\mathbb{F}C_n$ are given by

$$e_i = \frac{1}{n} \sum_{i=0}^{n-1} \zeta^{-ij} g^j, \quad 0 \le i \le n-1.$$

For each element $\sigma \in Gal(\mathbb{F}(\zeta^i) : \mathbb{F})$ set

$$\sigma(e_i) = \frac{1}{n} \sum_{j=0}^{n-1} \sigma(\zeta^{-i})^j g^j, \quad 0 \le i \le n-1.$$

Galois Descent

Two primitive idempotents of $\mathbb{F}(\zeta)C_n$ are equivalent if there exists $\sigma \in Gal(\mathbb{F}(\zeta^i):\mathbb{F})$ which maps one to the other. Let e_1,\ldots,e_t be a set of representatives of classes of primitive idempotents (reordering, if necessary).

Then, the set of primitive elements of $\mathbb{F}C_n$ is given by the formulas

$$\epsilon_i = \sum_{\sigma \in Gal(\mathbb{F}(\zeta^i):\mathbb{F})} \sigma(e_i) = \frac{1}{n} \sum_{j=0}^{n-1} tr_{\mathbb{F}(\zeta^i)|\mathbb{F}}(\zeta^{-ij})g^j, \quad 1 \leq i \leq t,$$

where $tr_{\mathbb{F}(\zeta^i)|\mathbb{F}}$ denotes the trace map of $\mathbb{F}(\zeta^i)$ over \mathbb{F} .

Theorem

The element $\epsilon_i = \frac{1}{n} \sum_{j=0}^{n-1} tr_{\mathbb{F}(\zeta^i)|\mathbb{F}}(\zeta^{-ij})g^j$ is an essential idempotent if and only if ζ^i is a primitive root of unity of order precisely equal to n.

Let $C=\langle g\rangle$ denote a cyclic group of order n. If i is a positive integer such that (n,i)=1, then the map $\psi_i:C\to C$ defined by $g\mapsto g^i$ is an automorphism of C that extends linearly to an automorphism of $\mathbb{F}C$, which we shall also denote by ψ_i .

Theorem

Let C be a cyclic group of order n and \mathbb{F} a field such that $\mathrm{char}(\mathbb{F})$ does not divide n. Given two essential idempotents $\epsilon_h, \epsilon_k \in \mathbb{F}C$, there exists an integer i with (n,i)=1 and the automorphism $\psi_i: \mathbb{F}C \to \mathbb{F}C$ defined as above is such that $\psi_i(\epsilon_h) = \epsilon_k$. Conversely, if ϵ is an essential idempotent and ψ_i is an automorphism as above, then $\psi_i(\epsilon)$ is also an essential idempotent.

Theorem

The number of essential idempotents in the group algebra $\mathbb{F}C_n$ is precisely

$$rac{arphi(\mathsf{n})}{|\mathit{Gal}(\mathbb{F}(\zeta):\mathbb{F})|}.$$

Cyclic codes Group Codes Essential idempotents An application Cyclic codes vs Abelian Codes

An application

Let \mathbb{F} be a field, A be a finite abelian group such that $char(\mathbb{F})$ does not divide |A| and $e \neq \widehat{A}$ an idempotent in $\mathbb{F}A$. Let

$$\mathcal{H}_e = \{ H < A \mid e\widehat{H} = e \}$$

and set

$$H_e = \prod_{H \in \mathcal{H}_e} H.$$

Then $e.\widehat{H_e} = e$ and thus $H_e \in \mathcal{H}_e$ so $H \subset H_e$, for all $H \in \mathcal{H}_e$. Hence H_e is the maximal subgroup of A such that $e\widehat{H} = \widehat{H}$. Actually, the converse also holds:

Proposition

Let \mathbb{F} be a field, A an abelian group and e an idempotent in $\mathbb{F}A$. Let K be a subgroup of A. Then, $e\widehat{K} = e$ if and only if $K \subset H_e$.

Corollary

Let $e \neq \widehat{A}$ be a primitive idempotent of $\mathbb{F}A$. Then, the factor group A/H_e is cyclic.

Definition (Sabin and Lomonaco (1995))

Let G_1 and G_2 denote two finite groups of the same order and let $\mathbb F$ be a field. Two ideals (codes) $I_1 \subset \mathbb F G_1$ and $I_2 \subset \mathbb F G_2$ are said to be **combinatorially equivalent** if there exists a bijection $\gamma: G_1 \to G_2$ whose linear extension $\overline{\gamma}: \mathbb F G_1 \to \mathbb F G_2$ is such that $\overline{\gamma}(I_1) = I_2$. The map $\overline{\gamma}$ is called a **combinatorial equivalence** between I_1 and I_2 .

Cyclic codes Group Codes Essential idempotents An application Cyclic codes vs Abelian Codes

Theorem

Every minimal ideal in the group algebra of a finite abelian group is combinatorially equivalent to a minimal ideal in the group algebra of a cyclic group of the same order. Cyclic codes Group Codes Essential idempotents An application Cyclic codes vs Abelian Codes

Cyclic codes vs Abelian Codes

We shall compare cyclic and Abelian codes of length p^2 under the hypotheses that $o(q) = \varphi(p^2)$ in $U(\mathbb{Z}_{p^n})$.

Remark

Note that in $\mathbb{F}C_{p^2}$ there exist precisely three primitive idempotents, namely:

$$e_0 = \widehat{G}, \ e_1 = \widehat{G_1} - \widehat{G} \ e \ e_2 = \widehat{G_2} - \widehat{G_1}.$$

Ideals of maximum dimension for each possible weight are:

$$I = I_0 \oplus I_1$$
 e $J = I_1 \oplus I_2$

with
$$dim(I) = p$$
, $w(I) = p$ e $dim(J) = p^2 - 1$, $w(J) = 2$.

Now we consider Abelian non-cyclic codes of length p^2 ; i.e., ideals of $\mathbb{F}G$ where

$$G = (C_p \times C_p) = \langle a \rangle \times \langle b \rangle$$
.

To find the primitive idempotents of $\mathbb{F}G$, we need to find subgroups H of G such that G/H is cyclic.

The idempotents of $\mathbb{F}G$ are:

$$e_0 = \widehat{G}, \ e_1 = \widehat{\langle a \rangle} - \widehat{G}, \ e_2 = \widehat{\langle b \rangle} - \widehat{G},$$
 $f_i = \widehat{\langle ab^i \rangle} - \widehat{G}, 1 \le i \le p-1.$

Weights and dimensions of minimal codes are:

$$dim(\mathbb{F}G)e_0=1$$
 e $dim(\mathbb{F}G)e_1=dim(\mathbb{F}G)f_i=p-1,$ $w((\mathbb{F}G)e_0)=p^2$ e $w((\mathbb{F}G)e_1)=w((\mathbb{F}G)f_i)=2p.$

Given any two subgroups H, K as above, then $G = H \times K$. Write $H = \langle h \rangle$ and $K = \langle k \rangle$. The corresponding central idempotents are $e = \widehat{H} - \widehat{G}$, $f = \widehat{K} - \widehat{G}$. Consider

$$I = (\mathbb{F}G)e \oplus (\mathbb{F}G)f,$$

Teorema (F. Melo e P.M)

The weight and dimension of $I = (\mathbb{F}G)e \oplus (\mathbb{F}G)f$ are

$$w(I) = \dim(I) = 2p - 2,$$

Definition

The **convenience** of a code C is the number

$$conv(C) = w(C)dim(C).$$

For the cyclic non-minimal codes we have:

$$conv(I_0 \oplus I_1) = p^2 \in conv(I_1 \oplus I_2) = 2(p^2 - 1).$$

For the sum of two minimal Abelian (non-cyclic) codes we have:

$$conv(\mathfrak{N})=4(p-1)^2.$$

Hence, if p>3, we have that $conv(\mathfrak{N})$ is bigger than conv(I) for any proper ideal I of $\mathbb{F}_q\mathcal{C}_{p^2}$.

G. K. Bakshi, M. Raka, A. Sharma, Idempotent Generators of Irreducible Cyclic Codes, *Proc. Int. Conf. Number Theory and Discrete Geometry*, Ramanujan Lecture Notes, **6**, (2008), 13–18, ed. R. Balasubramanian, S. G. Dani, P. M. Gruber, R. J. Hans-Gill.

S.D. Berman, On the theory of group codes, Kibernetika, 3, 1 (1967) 31–39.

S.D. Berman, Semisimple cyclic and abelian codes II, Kibernetika, 3, (1967) 17–23.

F. Melo and C. Polcino Milies, On Cyclic and Abelian Codes, *IEEE Transactions on Information Theory*, **59**, 11 (2013), 7314-7319.

F.J. MacWilliams, Binary codes which are ideals in the group algebra of an abelian group, *Bell System Tech. J.*, **49** (1970), 987–1011.

C. Polcino Milies and S.K. Sehgal, *An introduction to group rings*, Algebras and Applications, Kluwer Academic Publishers. Dortrecht. 2002.

R.E. Sabin and S.J. Lomonaco, Metacyclic Error-correcting Codes, Applicable Algebra in Engeneering, Communication and Computing, 6 (1995), 191–210.