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Definition

A linear code C ⊂ Fn is called a cyclic code if for every vector
(a0, a1, . . . , an−2, an−1) in the code, we have that also the vector
(an−1, a0, a1, . . . , an−2) is in the code.

Notice that the definition implies that if (a0, a1, . . . , an−2, an−1) is in the

code, then all the vectors obtained from this one by a cyclic permutation

of its coordinates are also in the code.
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Let

Rn =
F[X ]

〈X n − 1〉
;

We shall denote by [f ] the class of the polynomial f ∈ F[X ] in Rn.
The mapping:

ϕ : Fn → F[X ]

〈X n − 1〉
(a0, a1, . . . , an−2, an−1) ∈ F[X ] 7→ [a0 + a1X + . . . + an−2X

n−2 + an−1X
n−1].

ϕ is an isomorphism of F-vector spaces. Hence A code C ⊂ Fn is
cyclic if and only if ϕ(C) is an ideal of Rn.
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In the case when Cn = 〈a | an = 1〉 = {1, a, a2, . . . , an−1} is a
cyclic group of order n, and F is a field, the elements of FCn are of
the form:

α = α0 + α1a + α2a
2 + · · ·+ αn−1a

n−1.

It is easy to show that

FCn
∼= Rn =

F[X ]

〈X n − 1〉
;

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FCn.
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Definition

A group code is an ideal of a finite group algebra.

S.D. Berman 1967.
F.J. MacWilliams 1970.

In what follows, we shall always assume that char(K ) |6 |G | so all
group algebras considered here will be semisimple and thus, all
ideals of FG are of the form I = FGe, where e ∈ FG is an
idempotent element.
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Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) |6 |G |. The element

Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.

Ĥ is central if and only if H is normal in G .
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If H is a normal subgroup of a group G , we have that

FG · Ĥ ∼= F[G/H]

via the map ψ : FG · Ĥ → F[G/H] given by

g .Ĥ 7→ gH ∈ G/H.

so

dimF

(
(FG ) · Ĥ

)
= |G |
|H| = [G : H].

Set τ = {t1, t2, . . . , tk} a transversal of K in G (where k = [G : H]
and we choose t1 = 1),
then

{ti Ĥ | 1 ≤ i ≤ k}

is a a basis of (FG ) · Ĥ.
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Then, an element α ∈ FG · e can be written in the form

α =
∑
ν∈τ

αννĤ.

If we denote τ = {t1, t2, . . . , td} and H = {h1, h2, . . . , hm}, the
explicit expression of α is

α = α1t1h1+α2t2h1+· · ·+αd tdh1+· · ·+α1t1hm+α2t2hm+· · ·+αd tdhm.

The sequence of coefficients of α, when written in this order, is
formed by d repetitions of the subsequence α1, α2, · · ·αd , so this is
a repetition code.
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Let G be a finite group and let F be a field such that char(F) |6 |G |.
Let H and H∗ be normal subgroups of G such that H ⊂ H∗.
We can define another type of idempotents by:

e = Ĥ − Ĥ∗.
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Code Parameters

Theorem (R. Ferraz - P.M.)

Let G be a finite group and let F be a field such that
char(F) |6 |G |. Let H and H∗ be normal subgroups of G such that
H ⊂ H∗ and set . Then,

dimF (FG )e = |G/H| − |G/H∗| =
|G |
|H|

(
1− |H|
|H∗|

)
and

w((FG )e) = 2|H|

where w((FG )e) denotes the minimal distance of (FG )e.
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Theorem (R. Ferraz - P.M.)

Let G be a finite group and let F be a field such that
char(F) |6 |G |. Let H and H∗ be normal subgroups of G such that

H ⊂ H∗ and set e = Ĥ − Ĥ∗. Let A be a transversal of H∗ in G
and τ a transversal of H in H∗ containing 1. Then

B = {a(1− t)Ĥ | a ∈ A, t ∈ τ \ {1}}

is a basis of (FG )e over F.
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Let A be an abelian p-group. For each subgroup H of A such that
A/H 6= {1} is cyclic, we shall construct an idempotent of FA.
Since A/H is a cyclic subgroup of order a power of p, there exists
a unique subgroup H∗ of A, containing H, such that |H∗/H| = p.
We set

eH = Ĥ − Ĥ∗.

and also

eG =
1

|G |
∑
g∈G

g .

It is not difficult to see that this is a set of orthogonal idempotents
whose sum is equal to 1
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Definition

Letg be an element of a finite group G . The q-cyclotomic class of
g is the set

Sg = {gqj | 1 ≤ j ≤ tg − 1},

where tg is the smallest positive integer such that

qtg ≡ 1(mod o(g)).

Theorem

Let G be a finite group and F the field with q elements and assume
that gcd(q, |G |) = 1. Then, the number of simple components of
FG is equal to the number of q-cyclotomic classes of G .



Cyclic codes
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes

Theorem (Ferraz-PM (2007))

Let F be a finite field with |F| = q, and let A be a finite abelian
group, of exponent e. Then the primitive central idempotents can
be constructed as above if and only if one of the following holds:

(i) e = 2 and q is odd.

(ii) e = 4 and q ≡ 3 (mod 4).

(iii) e = pn and o(q) = ϕ(pn) in U(Zpn).

(iv) e = 2pn and o(q) = ϕ(pn) in U(Z2pn).
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Essential idempotents

1

1Resuklts in this section are joint work with G. Chalom and R. Ferraz.
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Let H be a normal subgroup of G . Then, Ĥ is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG . Then:

If e is not a constituent of Ĥ we have that eĤ = 0.

If e is a constituent of Ĥ we have that eĤ = e.

In this last case, we have that FG · e ⊂ FG · Ĥ.

Hence, the minimal code FG · e is a repetition code.
We shall be interested im primitive inempotents which are not of
this type.
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Definition

A primitive idempotent e in the group algebra FG , is an essential
idempotent if e · Ĥ = 0, for every subgroup H 6= (1) in G .

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.

These idempotents were first considered by Bakshi, Raka and Sharma in

a paper from 2008, where they were called non-degenerate.

Lemma

Let e ∈ FG be a primitive central idempotent. Then e is essential
if and only if the map π : G → Ge, is a group isomorphism.

Corollary

If G is abelian and FG contains an essential idempotent, then G is
cyclic.
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Assume that G is cyclic of order n = pn11 · · · p
nt
t . Then, G can be

written as a direct product G = C1 × · · · × Ct , where Ci is cyclic,
of order pnii , 1 ≤ i ≤ t.
Let Ki be the minimal subgroup of Ci ; i.e. the unique subgroup of
order pi in Ci and denote by ai a generator of this subgroup,
1 ≤ i ≤ t. Set

e0 = (1− K̂1) · · · (1− K̂t)

Then e0 is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent e ∈ FG is
essential if and only if e · e0 = e.
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Galois Descent

Let F be a field and Cn a cyclic group of order n such that char(F)
does not divide n. There is a well-known method to determine the
primitive idempotents os FCn.

If ζ denotes a primitive root of unity of order n, then F(ζ) is a
splitting field for Cn, and the primitive idempotents of FCn are
given by

ei =
1

n

n−1∑
j=0

ζ−ijg j , 0 ≤ i ≤ n − 1.

For each element σ ∈ Gal(F(ζ i ) : F) set

σ(ei ) =
1

n

n−1∑
j=0

σ(ζ−i )jg j , 0 ≤ i ≤ n − 1.
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Galois Descent

Two primitive idempotents of F(ζ)Cn are equivalent if there exists
σ ∈ Gal(F(ζ i ) : F) which maps one to the other. Let e1, . . . , et be
a set of representatives of classes of primitive idempotents
(reordering, if necessary).

Then, the set of primitive elements of FCn is given by the formulas

εi =
∑

σ∈Gal(F(ζ i ):F)

σ(ei ) =
1

n

n−1∑
j=0

trF(ζ i )|F(ζ−ij)g j , 1 ≤ i ≤ t,

where trF(ζ i )|F denotes the trace map of F(ζ i ) over F.



Cyclic codes
Group Codes

Essential idempotents
An application

Cyclic codes vs Abelian Codes

Theorem

The element εi = 1
n

∑n−1
j=0 trF(ζ i )|F(ζ−ij)g j is an essential

idempotent if and only if ζ i is a primitive root of unity of order
precisely equal to n.

Let C = 〈g〉 denote a cyclic group of order n. If i is a positive
integer such that (n, i) = 1, then the map ψi : C → C defined by
g 7→ g i is an automorphism of C that extends linearly to an
automorphism of FC , which we shall also denote by ψi .

Theorem

Let C be a cyclic group of order n and F a field such that char(F)
does not divide n. Given two essential idempotents εh, εk ∈ FC ,
there exists an integer i with (n, i) = 1 and the automorphism
ψi : FC → FC defined as above is such that ψi (εh) = εk .
Conversely, if ε is an essential idempotent and ψi is an
automorphism as above, then ψi (ε) is also an essential idempotent.
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Theorem

The number of essential idempotents in the group algebra FCn is
precisely

ϕ(n)

|Gal(F(ζ) : F)|
.
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Let F be a field, A be a finite abelian group such that char(F)
does not divide |A| and e 6= Â an idempotent in FA. Let

He = {H < A | eĤ = e}

and set
He =

∏
H∈He

H.

Then e.Ĥe = e and thus He ∈ He so H ⊂ He , for all H ∈ He .
Hence He is the maximal subgroup of A such that eĤ = Ĥ.
Actually, the converse also holds:

Proposition

Let F be a field, A an abelian group and e an idempotent in FA.
Let K be a subgroup of A. Then, eK̂ = e if and only if K ⊂ He .
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Corollary

Let e 6= Â be a primitive idempotent of FA. Then, the factor group
A/He is cyclic.

Definition (Sabin and Lomonaco (1995))

Let G1 and G2 denote two finite groups of the same order and let F
be a field. Two ideals (codes) I1 ⊂ FG1 and I2 ⊂ FG2 are said to be
combinatorially equivalent if there exists a bijection γ : G1 → G2

whose linear extension γ : FG1 → FG2 is such that γ(I1) = I2. The
map γ is called a combinatorial equivalence between I1 and I2.
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Theorem

Every minimal ideal in the group algebra of a finite abelian group is
combinatorially equivalent to a minimal ideal in the group algebra
of a cyclic group of the same order.
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We shall compare cyclic and Abelian codes of length p2 under the
hypotheses that o(q) = ϕ(p2) in U(Zpn).

Remark

Note that in FCp2 there exist precisely three primitive idempotents,
namely:

e0 = Ĝ , e1 = Ĝ1 − Ĝ e e2 = Ĝ2 − Ĝ1.

Ideals of maximum dimension for each possible weight are:

I = I0 ⊕ I1 e J = I1 ⊕ I2

with dim(I ) = p, w(I ) = p e dim(J) = p2 − 1, w(J) = 2.
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Now we consider Abelian non-cyclic codes of length p2; i.e., ideals
of FG where

G = (Cp × Cp) =< a > × < b > .

To find the primitive idempotents of FG , we need to find
subgroups H of G such that G/H is cyclic.

The idempotents of FG are:

e0 = Ĝ , e1 = <̂ a >− Ĝ , e2 = <̂ b >− Ĝ ,

fi = <̂ abi >− Ĝ , 1 ≤ i ≤ p − 1.
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Weights and dimensions of minimal codes are:

dim(FG )e0 = 1 e dim(FG )e1 = dim(FG )fi = p − 1,

w((FG )e0) = p2 e w((FG )e1) = w((FG )fi ) = 2p.

Given any two subgroups H, K as above, then G = H × K .
Write H =< h > and K =< k >. The corresponding central
idempotents are e = Ĥ − Ĝ , f = K̂ − Ĝ . Consider

I = (FG )e ⊕ (FG )f ,
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Teorema (F. Melo e P.M)

The weight and dimension of I = (FG )e ⊕ (FG )f are

w(I ) = dim(I ) = 2p − 2,

Definition

The convenience of a code C is the number

conv(C) = w(C)dim(C).
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For the cyclic non-minimal codes we have:

conv(I0 ⊕ I1) = p2 e conv(I1 ⊕ I2) = 2(p2 − 1).

For the sum of two minimal Abelian (non-cyclic) codes we have:

conv(N) = 4(p − 1)2.

Hence, if p > 3, we have that conv(N) is bigger than conv(I ) for
any proper ideal I of FqCp2 .
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